EEE 443/591 Antennas for Wireless Communications 3 hours rec.

Prerequisites: EEE 341 or equivalent

Reference Microwave Antenna Theory and Design by S. Silver
Books: Antennas by J. D. Kraus and R. J. Marhefka
 Antenna Theory and Design by W. L. Stutzman and G. A. Thiele
 Antenna Theory and Design by R. S. Elliott

Syllabus:

The course introduces the fundamental principles of antenna theory and applies them to particular antennas for wireless communications systems and other advanced antenna systems. In addition, the course develops appreciation for research issues of antennas for mobile wireless and advanced communications systems. Particular topics covered are: Introduction and examples of wireless communications; overview of wireless communications systems; antenna types; fundamental parameters of antennas; engineering principles; radiation integrals; linear wire antennas; loops; arrays; smart/intelligent/adaptive antennas; numerical computations; measurements.

OUTLINE

<table>
<thead>
<tr>
<th>TOPIC</th>
<th>Approximate number of 75-minute periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Antennas</td>
<td>1</td>
</tr>
<tr>
<td>a. Types of antennas</td>
<td></td>
</tr>
<tr>
<td>b. Radiation mechanism</td>
<td></td>
</tr>
<tr>
<td>c. Current distribution</td>
<td></td>
</tr>
<tr>
<td>d. Historical advancement</td>
<td></td>
</tr>
<tr>
<td>II. Fundamental Parameters of Antennas</td>
<td>6</td>
</tr>
<tr>
<td>a. Antenna</td>
<td></td>
</tr>
<tr>
<td>b. Radiation mechanism</td>
<td></td>
</tr>
<tr>
<td>c. Radiation pattern</td>
<td></td>
</tr>
<tr>
<td>d. Radiation intensity</td>
<td></td>
</tr>
<tr>
<td>e. Directivity</td>
<td></td>
</tr>
<tr>
<td>f. Gain</td>
<td></td>
</tr>
<tr>
<td>g. Efficiency, beamwidth, and bandwidth</td>
<td></td>
</tr>
<tr>
<td>h. Polarization</td>
<td></td>
</tr>
<tr>
<td>i. Impedance</td>
<td></td>
</tr>
<tr>
<td>j. Antenna as an aperture</td>
<td></td>
</tr>
<tr>
<td>Test 1</td>
<td>1</td>
</tr>
</tbody>
</table>
III. **Radiation Integrals**
 a. Vector potential \mathbf{A}
 b. Vector potential \mathbf{F}
 c. Far-field radiation
 d. Duality, reciprocity, and reaction theorem

IV. **Wire Antennas**
 a. Short wire
 b. Finite length dipole
 c. Ground effects

V. **Loop Antennas**
 a. Small circular loop
 b. Large circular loop
 c. Ground effects
 d. Polygonal loops

Test 2

VI. **Arrays**
 a. Linear array
 1. Broadside
 2. Endfire
 3. Scanning
 4. Binomial
 5. Dolph-Tchebyscheff
 b. Planar array
 c. Circular array
 d. Designs
 1. Dolph-Tschebyscheff
 2. Yagi-Uda
 3. Log-Periodic
 d. Smart/Intelligent/Adaptive Antennas

VII. **Synthesis Methods-Overview**

VIII. **Microstrip Antennas**

IX. **Smart Antennas/Adaptive Arrays**

X. **Measurements**
 a. Antenna ranges
 b. Radiation patterns
 c. Gain measurements
 d. Directivity
 e. Polarization measurements
 f. Scale model measurements

Final Exam

September 21, 2017
University Academic Integrity Policy (AIP) refers to each student's obligation to act with honesty and integrity and to respect the rights of others in carrying out all academic assignments. Violations of the University AIP will not be ignored. Penalties include reduced or no credit for submitted work, a failing grade in the class, a note on your official transcript that shows you were punished for cheating, suspension, expulsion and revocation of already awarded degrees. The University requires that should I implement any penalty for violations of the academic integrity policy, I must report the matter to the Dean's office. The University has a Student Academic Integrity Policy, which will be followed in EEE 443/591.

September 21, 2017